ESO news: First ever binary star found near our galaxy’s supermassive black hole

Original Article by European Southern Observatory: https://www.eso.org/public/news/eso2418/

Article by An international team of researchers has detected a binary star orbiting close to Sagittarius A*, the supermassive black hole at the centre of our galaxy. It is the first time a stellar pair has been found in the vicinity of a supermassive black hole. The discovery, based on data collected by the European Southern Observatory’s Very Large Telescope (ESO’s VLT), helps us understand how stars survive in environments with extreme gravity, and could pave the way for the detection of planets close to Sagittarius A*.

Black holes are not as destructive as we thought,” says Florian Peißker, a researcher at the University of Cologne, Germany, and lead author of the study published today in Nature Communications. Binary stars, pairs of stars orbiting each other, are very common in the Universe, but they had never before been found near a supermassive black hole, where the intense gravity can make stellar systems unstable.

This new discovery shows that some binaries can briefly thrive, even under destructive conditions. D9, as the newly discovered binary star is called, was detected just in time: it is estimated to be only 2.7 million years old, and the strong gravitational force of the nearby black hole will probably cause it to merge into a single star within just one million years, a very narrow timespan for such a young system.

This provides only a brief window on cosmic timescales to observe such a binary system — and we succeeded!” explains co-author Emma Bordier, a researcher also at the University of Cologne and a former student at ESO.

For many years, scientists also thought that the extreme environment near a supermassive black hole prevented new stars from forming there. Several young stars found in close proximity to Sagittarius A* have disproved this assumption. The discovery of the young binary star now shows that even stellar pairs have the potential to form in these harsh conditions. “The D9 system shows clear signs of the presence of gas and dust around the stars, which suggests that it could be a very young stellar system that must have formed in the vicinity of the supermassive black hole,” explains co-author Michal Zajaček, a researcher at Masaryk University, Czechia, and the University of Cologne.

The newly discovered binary was found in a dense cluster of stars and other objects orbiting Sagittarius A*, called the S cluster. Most enigmatic in this cluster are the G objects, which behave like stars but look like clouds of gas and dust. 

It was during their observations of these mysterious objects that the team found a surprising pattern in D9. The data obtained with the VLT’s ERIS instrument, combined with archival data from the SINFONI instrument, revealed recurring variations in the velocity of the star, indicating D9 was actually two stars orbiting each other. “I thought that my analysis was wrong,” Peißker says, “but the spectroscopic pattern covered about 15 years, and it was clear this detection is indeed the first binary observed in the S cluster.”

The results shed new light on what the mysterious G objects could be. The team proposes that they might actually be a combination of binary stars that have not yet merged and the leftover material from already merged stars.

The precise nature of many of the objects orbiting Sagittarius A*, as well as how they could have formed so close to the supermassive black hole, remain a mystery. But soon, the GRAVITY+ upgrade to the VLT Interferometer and the METISinstrument on ESO’s Extremely Large Telescope (ELT), under construction in Chile, could change this. Both facilities will allow the team to carry out even more detailed observations of the Galactic centre, revealing the nature of known objects and undoubtedly uncovering more binary stars and young systems. “Our discovery lets us speculate about the presence of planets, since these are often formed around young stars. It seems plausible that the detection of planets in the Galactic centre is just a matter of time,” concludes Peißker.

This research was presented in the paper “A binary system in the S cluster close to the supermassive black hole Sagittarius A*” published today in Nature Communications (doi: 10.1038/s41467-024-54748-3).

The team is composed of F. Peißker (Institute of Physics I, University of Cologne, Germany [University of Cologne]), M. Zajaček (Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czechia; University of Cologne), L. Labadie (University of Cologne), E. Bordier (University of Cologne), A. Eckart (University of Cologne; Max Planck Institute for Radio Astronomy, Bonn, Germany), M. Melamed (University of Cologne), and V. Karas (Astronomical Institute, Czech Academy of Sciences, Prague, Czechia).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society. 

This image indicates the location of the newly discovered binary star D9, which is orbiting Sagittarius A*, the supermassive black hole at the centre of our galaxy. It is the first star pair ever found near a supermassive black hole. The cut-out shows  the binary system as detected by the SINFONI spectrograph on ESO’s Very Large Telescope. While the two stars cannot be discerned separately in this image, the binary nature of D9 was revealed by the spectra captured by SINFONI over several years. These spectra showed that the light emitted by hydrogen gas around D9 oscillates periodically towards red and blue wavelengths as the two stars orbit each other.
Credit:ESO/F. Peißker et al., S. Guisard

Two stars have been found orbiting each other in the vicinity of Sgr A*, the supermassive black hole at the centre of the Milky Way. A young binary star system forming and surviving in this extreme gravity means that black holes are not as destructive as we thought. This video summarises the discovery. 
For more details, check: https://www.eso.org/public/news/eso2418/

Credit:
ESO
The animation shows D9, the first ever star pair discovered near Sagittarius A*, the supermassive black hole at the centre of the Milky Way. We zoom in and out on the black hole and the single stars orbiting it, to then get close to D9, the first ever binary star system found in its vicinity. The video, which was made by an artist at the Brno Observatory and Planetarium, shows how the star system orbits the black hole. It also reveals the dusty gas cloud in which the star pair is enveloped, which suggests it is a young star system. The formation and survival of a binary star system in this extreme environment means that black holes are not as destructive as we thought. This animation was made possible thanks to a Czech Science Foundation Junior Star grant (GM24-10599M).
Credit:
P. Karas (Brno Observatory and Planetarium), RSA Cosmos Sky Explorer. Acknowledgements: M. Zajaček, F. Peißker and Czech Science Foundation
The animation shows how the two stars of the D9 star system orbit each other, enveloped in a cloud of gas and dust. The blue line indicates the orbit of the binary system around Sagittarius A*, the supermassive black hole at the centre of the Milky Way. D9 is the first ever binary star found near a supermassive black hole. Its formation and survival in this extreme environment means that black holes are not as destructive as we thought.
Credit:
ESO/M. Kornmesser

Contact:

Emma Bordier
Institute of Physics 1, University of Cologne
Cologne, Germany
Tel: +49 221 470 3548
E-Mail: 

Florian Peißker
Institute of Physics 1, University of Cologne
Cologne, Germany
Tel: +49 221 470 7791
E-Mail: 

Michal Zajaček
Department of Theoretical Physics and Astrophysics, Masaryk University
Brno, Czechia
Tel: +420 549 49 8773
E-Mail: 

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Mobil: +49 151 241 664 00
E-Mail: 

Markus Nielbock (Pressekontakt Deutschland)
ESO Science Outreach Network und Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 6221 528-134
E-Mail: 

Prachi Prajapati

The Evolution of Our Universe – Lindau Nobel Laureate Meeting Blog

Prachi Prajapati, an observational cosmologist working at the Max Planck Institute for Radio Astronomy  and affiliated to the University of Cologne, participated in the 73rd Lindau Nobel Laureate Meeting. She reflects on her career so far and the time she spent in Lindau.

As a school kid growing up in India, I was interested in science in general. When Sunita Williams, a NASA-astronaut of Indian origin, flew to space for the first time in 2006, I closely followed the news covering that event. That interest in space science stayed with me; and having finished school, it was an apt choice to apply for a bachelor’s in Engineering Physics at the Indian Institute of Space Science and Technology (IIST), followed by a master’s degree in Astronomy and Astrophysics.

After graduation, I was immediately placed to work at the astrophysics department of the Indian Space Research Organization, where I also experienced many night shifts for observations at optical infrared telescopes on the hilltops in Western and Northern India. One of the best things was to see the Milky Way with naked eyes. The job included mainly R&D tasks, including the back-end instrumentation for ground-based telescopes. After three years, I decided to go back into academia. Since autumn 2023, I am pursuing my PhD in Bonn-Cologne, Germany, at the Max Planck Institute for Radio Astronomy.

Birth of Stars, Galaxies, Clusters and Super Clusters

Galaxies are constituted of stars, gas, dust, and dark matter. Basically, my PhD is focused on understanding the process how galaxies are formed and evolved in the history of cosmic time. Big bang is one of the most popular theories for the beginning of universe. Tracing the star formation history using the cold molecular gas lines, we are trying to find out how and when different galaxies were born after big bang, how they developed over time to become what they are at present. For analogy, it is similar to human evolution; the Darwin theory says that maybe we were monkeys and eventually we developed into the human shape as we are today – so there is a link between the two stages which is called evolution.

We observe the high-redshift galaxies using radio and submillimeter telescopes, doing multiwavelength observations of the galaxies starting from the epoch when the universe was about a few hundred million years old, until now. Eventually, the aim is to observationally understand the overall picture of the universe from the earlier epochs (high-redshift) to the stars and galaxies that we see today all around us to find out how these large structures were formed. At the same time, we all are part of the Milky Way, which itself is a part of the local cluster which is a cluster of galaxies. Now we also know of the existence of super clusters that are clusters of clusters of galaxies.

Prachi Prachapati and Brian Josephson
Prachi meeting Brian Josephson

The Majority of the researchers in this research field try to understand physics at all these different astrophysical scales to answer numerous open questions. This is fundamental physics, which is not immediately affecting the humanity, but it is more of a curiosity-driven research to fulfill the inner quest for understanding how the nature works. Maybe in the future it might have some societal implications – who knows?! For example, Einstein’s general theory of relativity was a pure theoretical beauty, which led to GPS applications after almost a century and now it is an integrated part of our lives.

Real Life of an Astrophysicist

Many people imagine an astronomer looking at the sky with a telescope at night – of course, that is one part of it, i.e., we have ground-based optical-infrared telescopes which are operated only at nighttime – but we also have space telescopes like James Webb Space Telescope (JWST), Hubble Space Telescope (HST) and Chandra X-ray Observatory, which are always in the sky taking observations. In addition, we also have ground-based radio-submillimeter telescopes, operating at longer wavelengths. These waves are observable also during daytime from Earth as the atmosphere is transparent for them and the sunlight in radio is not super bright, so they do not need to be observed only at nighttime. Such multiwavelength observations using different observatories provide a holistic understanding of the astrophysical targets we look at. Now with advancements in technology, most of the observatories are working automatically, and one does not have to be on-site for observations; but it is good to learn how the observations are realized. This was the reason why I visited the Karl Jansky Very Large Array (VLA) in the United States once to experience the techniques using with which the radio data for my PhD was observed. But in fact, most of the time, I am not looking through a telescope – I am sitting in front of a computer screen either coding or using software for data reduction. Not all the data we observe are perfect, so one has to remove the noises caused by unwanted radio frequency interference (RFI). For our observations, signals from mobile phones, WiFi, Bluetooth, orbiting satellites, etc. are negatively impacting the data as they also transmit similar frequencies like those we are using in radio observations. Handling large data volume is also an important aspect for all observatories, in particular for radio telescopes, as the amount of data is increasing. Upcoming radio observatories like SKA, the Square Kilometer Array in Australia and South Africa, will achieve around 700 petabytes per year.

Proposals and Future Perspectives

We receive most of the data remotely via our accounts on the observatories’ websites, for which we had submitted proposals. Proposing for observations is also a crucial part of the PhD – scientists are motivated to submit observational proposals for making new observations. This process is quite competitive because the telescopes have limited timeslots for observations and there are lots of researchers from across the world competing for them. Some of the most demanded telescopes are JWST for infrared bands, VLA for
radio data, and ALMA for submillimeter. After a successful proposal and getting promising results from it, we have proposed for more observations in the coming cycle of VLA; however, due to the competitive run on the telescopes, I need to have a plan-B for my PhD. It is important to be prepared to use some other archival data to accomplish the aims of my doctoral research project, if the latter proposal does not succeed. I am particularly interested in looking at galaxies farther in distance, in the high-redshift universe, which
also means that I am really probing the faintest signal that one can get from the early universe. The future in the field is promising with the latest/upcoming observatories like JWST, ngVLA, and SKA.

My plan is to go back to India as an academician and make use of my knowledge and of western  collaborations to promote the field in my home country, and facilitate younger generations to conduct good science.

My Lindau Experience

One of the opportunities to connect with other scientists and the Nobel Laureates was the Lindau Meeting. I met so many people from across the globe – and I am still in touch with many of them. The interdisciplinary aspect of the Meeting amazed me. It was quite fruitful to attend the Lectures by Nobel Laureates, not only on science but also on outreach, learn how they are trying to change the academic systems in different countries and doing promotion of science. Participants were always encouraged to keep an open mind and to explore unknown fields of research. It was a perfect mix of life, philosophy, and science!

A host family in Lindau sitting at the table
Prachi stayed with a host family: “They were super lovely and I had an amazing time discussing and exchanging science, culture, and many other topics with them.”

Additionally, I was a part of one of the Sciathon groups this year and our project got shortlisted, which meant we had the chance to discuss our project during the Sciathon Forum. This is a good platform for people who are interested in startups: talking to experts from industries and academia, getting their input or suggestions to modify things in the project – and even to be appreciated that you are doing a good work, that provides motivation to continue.

My advice to future Young Scientists: Talk with as many people as possible. Connect with them. And enjoy your time there at Lindau for a life-long experience!

Prachi Prajapati, 2024 Lindau Alumna, is conducting observational cosmology at the Max Planck Institute in Bonn, Germany. After having completed her bachelor’s and master’s degree with a major in astrophysics, she was working at the Indian Space Research Organization for about three years, before she decided to pursue her PhD. She aims to understand the early history of the universe based on the data collected by telescopes around the world.

Text and photos: Prachi Prajapati
Original Article:

Weiteres mittelschweres Schwarzes Loch im Zentrum unserer Galaxie gefunden

Astronomers may have found ‘missing link’ black hole hiding among a star cluster near the centre of our Galaxy – Florian Peißker

18.07.2024 – Uni-Köln Magazin

23.10.2024 – BBC Sky

Artikel des Uni_Köln-Magazins:
Bisher sind im ganzen Universum nur rund zehn mittelschwere Schwarze Löcher entdeckt worden / Das nun identifizierte Schwarze Loch führt dazu, dass sich umliegende Sterne unerwartet geordnet innerhalb eines Sternhaufens bewegen

Ein internationales Team von Forscher*innen unter Leitung von PD Dr. Florian Peißker hat einen Sternenhaufen in direkter Umgebung des supermassiven Schwarzen Lochs SgrA* (Sagittarius A Stern) im Zentrum unserer Galaxie untersucht und Anzeichen für ein weiteres, mittelschweres Schwarzes Loch gefunden. In unserem ganzen Universum sind trotz enormer Anstrengungen der Forschung bisher nur ungefähr zehn dieser mittelschweren Schwarzen Löcher gefunden worden. Wissenschaftler*innen nehmen an, dass sie sich schon kurz nach dem Urknall gebildet haben und durch Verschmelzung als „Samen“ für supermassive Schwarze Löcher fungieren. Die Studie wurde unter dem Titel „The Evaporating Massive Embedded Stellar Cluster IRS 13 Close to Sgr A*. II. Kinematic structure“ im Fachjournal The Astrophysical Journal veröffentlicht.

Der untersuchte Sternenhaufen namens IRS 13 liegt in einer Entfernung von 0,1 Lichtjahren vom Zentrum unserer Galaxie. Für astronomische Verhältnisse ist dies sehr nah, allerdings müsste man unser Sonnensystem dennoch zwanzig Mal von einem Ende zum anderen bereisen, um diese Strecke zurückzulegen. Den Forscher*innen ist aufgefallen, dass die Sterne, die in IRS 13 enthalten sind, sich unerwartet geordnet bewegen. Eigentlich hätten die Forscher*innen eine zufällige Anordnung der Sterne erwartet. Die geordnete Bewegung lässt zwei Schlüsse zu: Zum einen scheint IRS 13 mit SgrA* zu interagieren, was zu der geordneten Bewegung der Sterne führt. Zum anderen muss es etwas innerhalb des Sternenhaufens geben, damit dieser seine beobachtete kompakte Form behalten kann.

Multiwellenlängenbeobachtungen mit dem Very Large Telescope sowie den Teleskopen ALMA und Chandra deuten nun darauf hin, dass der Grund für die kompakte Form von IRS 13 ein mittelschweres Schwarzes Loch sein könnte, welches sich im Zentrum des Sternenhaufens befindet. Dafür würde sprechen, dass die Forscher*innen charakteristische Röntgenstrahlung sowie ionisiertes Gas beobachten konnten, das mit einer Geschwindigkeit von mehreren 100 km/s in Form eines Rings um die vermutete Position des mittelschweren Schwarzen Lochs rotiert.

Ein weiteres Indiz für die Anwesenheit eines mittelschweren Schwarzen Lochs ist die ungewöhnlich hohe Dichte des Sternenhaufens, die höher ist als jede andere bekannte Dichte eines Sternenhaufens in unserer Milchstraße. „Es scheint sich bei IRS 13 möglicherweise um einen essentiellen Baustein für das Wachstum unseres zentralen Schwarzen Lochs SgrA* zu handeln“, so Florian Peißker, Erstautor der Studie. „Dieser faszinierende Sternenhaufen überrascht die wissenschaftliche Community immer wieder, seitdem er vor rund zwanzig Jahren entdeckt wurde. Zunächst dachte man, dass es sich um einen ungewöhnlich schweren Stern handelt. Mit den hochaufgelösten Daten können wir nun aber die bausteinartige Zusammensetzung mit einen mittelschweren Schwarzen Loch im Zentrum belegen.“ Geplante Beobachtungen mit dem James-Webb-Weltraumteleskop sowie dem sich im Bau befindenden Extremely Large Telescope werden weitere Einblicke in die Vorgänge innerhalb des Sternenhaufens liefern.
 

Inhaltlicher Kontakt:
Dr. Florian Peißker
Institut für Astrophysik
+49 221 470 7791

Presse und Kommunikation:
Jan Voelkel
+49 221 470 2356

Zum Video:
https://youtu.be/CYfUNQYk4sU

Zur Publikation:
https://doi.org/10.3847/1538-4357/ad4098

Superschnelle Babysterne flitzen wie ein Bienenschwarm um Schwarzes Loch

14.06.2024

Forschungsmeldung der Universität zu Köln:
Die jungen Sterne umrunden das Schwarze Loch im Zentrum unserer Galaxie mit mehreren 1000 km/s / Veröffentlichung in Astronomy & Astrophysics

Astronomische Beobachtungen zeigen, dass sich neu entdeckte Babysterne in der Umgebung von Sagittarius A*, dem Schwarzen Loch im Zentrum unserer Galaxie, anders verhalten als erwartet: Sie beschreiben ähnliche Bahnen wie bereits bekannte Hochgeschwindigkeitssterne und ordnen sich in einem bestimmten Muster um das Schwarze Loch an. Die Studienergebnisse deuten darauf hin, dass Sgr A* die Sterne zu bestimmten Anordnungen veranlasst. Die Studie wurde unter dem Titel „Young Stellar Objects in the S-cluster: The Kinematic Analysis of a Sub-population of the Low-mass G-objects close to Sgr A*“ in der Fachzeitschrift Astronomy & Astrophysics veröffentlicht. Beteiligt waren Forscher*innen der Universität zu Köln, der Masaryk-Universität in Brünn (Tschechien), der Karls-Universität in Prag (Tschechien), der Akademie der Wissenschaften der Tschechischen Republik und des Max-Plack-Instituts für Radioastronomie in Bonn.

Vor rund dreißig Jahren wurden in der direkten Umgebung des supermassiven Schwarzen Lochs Sgr A* im Zentrum der Milchstraße Hochgeschwindigkeitssterne entdeckt. Diese Sterne, auch S-Sterne genannt, umrunden das Schwarze Loch mit Geschwindigkeiten von mehreren 1000 km/s in wenigen Jahren. Die Sterne sind überraschend jung und ihre Anwesenheit rätselhaft, denn nach gängigen Theorien würde man nur alte und leuchtschwache Sterne in der unmittelbaren Umgebung eines Schwarzen Lochs erwarten.

Die technologischen Fortschritte der letzten Jahrzehnte und die lange Beobachtungszeit des galaktischen Zentrums durch moderne Teleskope werfen aktuell noch weitere Fragen auf. So wurde zum Bespiel im Jahr 2012 ein Objekt entdeckt, bei dem Wissenschaftler*innen von einer Gaswolke ausgingen, die vom Schwarzen Loch „aufgesaugt“ wird. Zwar hat sich die These nicht bestätigt, es war aber lange Zeit nicht klar, um was es sich genau bei diesem Objekt handeln könnte. Erst in den letzten Jahren verdichten sich die Anzeichen, dass es ein sehr junger Babystern sein könnte, umgeben von einer staubigen Wolke.

Inklusive dieses Babysterns untersuchten die Wissenschaftler*innen für die aktuelle Studie ein Dutzend Objekte in der direkten Umgebung des supermassiven Schwarzen Lochs, die alle sehr ähnliche Eigenschaften aufweisen. Sie fanden heraus, dass die Objekte nochmals deutlich jünger sind als die bereits bekannten Hochgeschwindigkeitssterne. „Interessanterweise verhalten sich diese jungen ‚Babysterne‘ aber so wie die S-Sterne. Das bedeutet, auch die Babysterne umrunden das Schwarze Loch mit mehreren 1000 km/s in wenigen Jahren“, so Dr. Florian Peißker vom Institut für Astrophysik der Universität zu Köln und Erstautor der Studie. „Bereits die S-Sterne sind überraschend jung. Nach gängigen Theorien ist die Anwesenheit eines stellaren Kindergartens mit den noch jüngeren ‚Babysternen‘ völlig unerwartet,“ fügt Dr. Peißker hinzu.

Es zeigte sich weiterhin, dass dieser Sternenhaufen, bestehend aus den Babysternen und den S-Sternen, auf den ersten Blick wie ein chaotischer Bienenschwarm aussieht. Wie ein Schwarm weist aber auch der Sternenhaufen Muster und Regelmäßigkeiten auf. So konnten die Forscher*innen zeigen, dass sich die Babysterne wie die S-Sterne auf bestimmte und geordnete Weise im dreidimensionalen Raum anordnen. „Das bedeutet, es gibt gewisse präferierte Orientierungen der Sterne. Die Verteilung beider Sternvarianten gleicht dabei einer Scheibe, was den Eindruck nahelegt, dass das Schwarze Loch Sterne dazu zwingt, sich in geordneten Bahnen anzusiedeln“, so Peißker.

Originalpublikation: https://portal.uni-koeln.de/forschung/forschungsmeldungen/detail-forschungsmeldung/superschnelle-babysterne-flitzen-wie-ein-bienenschwarm-um-schwarzes-loch
 

Inhaltlicher Kontakt:
Dr. Florian Peißker
Institut für Astrophysik
+49 221 470 7791

peisskerph1.uni-koeln.de

Presse und Kommunikation:
Jan Voelkel
+49 221 470 2356
j.voelkelverw.uni-koeln.de

Zur Publikation:
https://www.aanda.org/articles/aa/full_html/2024/06/aa49729-24/aa49729-24.html